Saturday, March 13, 2010

IPv6 RIPng dynamic routing

The linked video demonstrates RIPng, our first dynamic routing protocol for IPv6. This is a simple but inefficient routing protocol. The metric is based on number of router hops, with no provision for differentiating between links with drastically different bandwidth (a frame-relay hop has the same cost as a 10-gig-ethernet in RIPng). Each router multicasts its entire routing protocol out each interface every 30 seconds, which wastes router CPU. RIPng routinely takes minutes to reroute around network failures.
RIPng does have the refinements added in RIPv2. For example, it multicasts its route updates. It is also capable of including tags in the route updates.
The big advantage of RIPng is that it is simple to understand. But in production that is not good enough. RIPng is a perfect protocol for a computer science student to implement as a class project due to its simplicity, but having the PBX unreachable for 3-5 minutes while routing reconverges is unacceptable in a business environment.

Labels: ,

Sunday, November 1, 2009

IPv6 Static Routing

In this hands-on exercise, we configure IPv6 addresses on 3 routers in a triangle. Then we configure IPv6 static routes to allow the 6 IPv6 subnets (3 loopback, 3 P2P links) to be accessible on all 3 routers.
Static routes are easy to understand. At first glance they appear simple. You just manually configure which next-hop to go to for each subnet destination. But in actual use they are very complex. In our example with 3 routers and 6 subnets, we end up using 12 static route commands to implement our routing. Even then we do not achieve full redundancy, because static routes do not reroute around network failures. Even a small production network with approximately 20 routers would have too many static route commands necessary to make a static-route implementation feasible. In the real world, using dynamic routing protocols to minimize manual configurations (minimizing both effort and errors) is necessary to achieve a robust environment.
That said, static routes are sometimes useful at the edge of your network. You redistribute static routes into your routing protocol at the edge of your network where you don't want to dynamically route with routers outside your administrative control. The goal there is just to use the static route to inject a route into your routing protocol. Not to use the static route as your primary routing mechanism.

Labels:

Saturday, September 19, 2009

IPv6 theory

The linked video introduces IPv6 theory. IPv6 is the 128-bit address replacement for IPv4. The Internet is expected to run out of it's 4-billion IPv4 addresses in 2012. IPv6 will replace IPv4 at the network-layer of the OSI stack. By replacing one layer in the stack, most applications and most layer-2 network devices will continue to function.

IPv6 includes several technical improvements over IPv4. IPv6 uses optional extension headers, so only packets requiring special options will have those headers. As a result most IPv6 packets will have simpler headers than their IPv4 counterparts. IPv6 eliminates broadcast, and instead uses multicast for most neighbor discovery functions. This is more efficient CPU-wise because hosts only need to subscribe to the multicast groups they require. IPv6 hosts use stateless autoconfiguration to acquire link-local and internet routable IPv6 addresses. In many cases this can eliminate the need for a separate DHCP server. And of course IPv6 includes 128-bit addresses, allowing 256 billion billion billion billion hosts.

The migration from IPv4 to IPv6 will be the highlight and most significant change of our networking careers. Most of us were not in this business during the IPv3 to IPv4 migration on January 1st 1983 (a 'flag day' migration). Odds are IPv6 will remain the dominant internet protocol until after we retire.

A PDF version of my presentation will be attached to the comments section.

Labels: , ,